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Entraining the topology and the dynamics of a network of phase oscillators
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We show that the topology and dynamics of a network of unsynchronized Kuramoto oscillators can be
simultaneously controlled by means of a forcing mechanism which yields a phase locking of the oscillators to
that of an external pacemaker in connection with the reshaping of the network’s degree distribution. The
entrainment mechanism is based on the addition, at regular time intervals, of unidirectional links from oscil-
lators that follow the dynamics of a pacemaker to oscillators in the pristine graph whose phases hold a
prescribed phase relationship. Such a dynamically based rule in the attachment process leads to the emergence
of a power-law shape in the final degree distribution of the graph whenever the network is entrained to the
dynamics of the pacemaker. We show that the arousal of a scale-free distribution in connection with the success
of the entrainment process is a robust feature, characterizing different networks’ initial configurations and

parameters.

DOI: 10.1103/PhysRevE.79.046105

I. INTRODUCTION

The last decade has seen an increasing interest from the
scientific community toward the study of complex networks,
i.e., ensembles of interacting nodes whose connectivity
structure is irregular, complex, and possibly evolving in time,
with the main focus moving from the analysis of small net-
works to that of systems with thousands or millions of nodes,
and with a renewed attention to the properties of networks of
dynamical units [1,2].

A series of unifying principles and statistical properties
common to most of the real networks has been unraveled.
Probably, the most important of them is the scaling of the
degree distribution of real world networks. The degree dis-
tribution P(k) (defined as the probability that a node chosen
uniformly at random has degree k) has been found to ubig-
uitously and significantly deviate from the Poisson or Gauss-
ian distributions expected from random graphs and, in many
cases, to exhibit a power-law [scale-free (SF)] tail [i.e.,
P(k)~k~”] with an exponent 7y taking a value between two
and three.

Consequently, most of the early attention of the scientific
community was devoted to devising suitable models to prop-
erly account for the setting of the SF behavior. The main
streams in this research have mostly pursued two principal
lines: a statistical approach and an adaptive approach. As for
the statistical models, they can be classified into two main
classes: the nongrowing models, and the growing models.
The former class includes those models that, starting from
the entire set of nodes, establish specific linking rules that
produce the desired degree distribution while the latter class
includes those models for which the degree distribution is the
result of a process through which an initial network grows in
time by acquiring new nodes (or links), with proper statisti-
cal rules for attaching the added nodes (or setting the new
links) to those of the pristine graph.

The most famous nongrowing model is the so-called con-
figuration model, which was introduced by Bender and Can-
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field [3], with the aim of constructing a random graph dis-
playing an arbitrary degree distribution. As for the class of
growing models, one has to refer to the original Barabdsi-
Albert model of preferential attachment [4] to its many ex-
tensions, as well as to alternative models that do not explic-
itly make use of preferential attachment rules, such as those
arising from the so-called vertex copying and duplication
mechanisms [5].

On the other side, regarding the adaptive approach, it has
to be mentioned that SF configurations have been obtained
either by considering an evolutionary preferential attachment
process on top of a network growth ruled by an adaptive
capacity of nodes to attract links depending on the dynamical
state of the network [6], or as a consequence of network
functioning readjustment due to successive node deletion and
correspondent preferential redistribution of the deleted node
quality (fitness) among its neighbors [7]. A recent review [8]
summarizes the most important results on adaptive (evolu-
tionary) processes, and their influence into reshaping and/or
selecting the structural form of a network.

In more recent years, the attention has concentrated to
understanding the intimate relationship between the topo-
logical structure displayed by a graph, and the mechanisms
leading to the arousal of a collective behavior (as, e.g., the
synchronization of all the network’s nodes into a common
dynamical behavior) [2,9,10]. Recent studies have, indeed,
shown that (i) the ability of a graph to give rise to a synchro-
nous behavior can be greatly enhanced by exploiting the to-
pological structure emerging from independent statistically
driven growth processes [11]; (ii) proper topological mecha-
nisms of rewiring and decoupling can enhance the arousal of
a synchronized behavior [12]; (iii) a dynamical evolution of
the underlying topology of a graph is eventually able to sta-
bilize a synchronous motion also in those cases in which
synchronization would be prevented in static graph configu-
rations [13].

In particular, the discussion on the relationship between
network’s structure and dynamics started with the observa-
tion that synchrony can be even deteriorated when increasing
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the heterogeneity in the connectivity distribution of a un-
weighted network at the same average network distance [14],
and later advanced with the evidence that such a limitation
could be properly overcome by a suitable weighting proce-
dure [2,11].

However, a full understanding on how graph functioning
can be responsible alone for the arousal of a given network
structure is still an open question. In this paper, we provide
the general description of the emergence of scale-free distri-
butions in the network’s connectivity in connection with the
forcing of a collective (synchronized) network’s dynamics of
interacting dynamical systems, this way extending the inves-
tigation recently reported by us in Ref. [15], and, at the same
time, giving full details on the generality and robustness of
this relationship between network function and structure.

The paper is organized as follows. In Sec. II we introduce
and discuss a model describing a network of bidirectionally
coupled phase oscillators subjected to a forcing process from
external pacemakers. In Sec. III we present the results of
these interacting networks at both the level of the emerging
synchronized dynamics, and at the level of the evolution of
the underneath topological structure. The understanding of
the phenomenon is given in Sec. IV, as well as a detailed
analysis of its robustness and reproducibility under different
scenarios, such as the presence of noise, alternative coupling
functions, or different initial graph configurations. Finally, in
Sec. V we summarize some conclusions and give further
outlook.

II. MODEL

In this section we start by explaining the details of the
model in two steps: first, we introduce the pristine network
Gy (i.e., previous to forcing), as well as some useful param-
eters to characterize the dynamical state of the network.
Next, we describe how the topological structure of the pris-
tine network can be reshaped by means of a forcing process
ruled by the dynamics.

A. Pristine network

We consider an initial graph G, of N bidirectionally
coupled Kuramoto phase oscillators [16]. The equation de-
scribing the evolution of the instantaneous phases ¢;(¢)(i
=1,...,N) of the oscillators is

N
. d
&= wp; + _E a;; sin(¢; = ¢,), (1)

koij=1

where dot denotes temporal derivative, {wp;} is the set of
natural frequencies of the phase oscillators (randomly taken
from a uniform distribution of mean 0.5 and width Aw),
koi=k;(t=0) is the initial inner degree of the ith oscillator, d
is the strength of the bidirectional coupling, and A=(a;)) is
the NX N adjacency matrix of G,. Time integration is here
performed by means of the Heun method with an integration
step Af;,=0.1 time units (t.u.). Initial conditions for the
phases of the oscillators are randomly taken from a uniform
distribution in the interval (0,2).
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It is well known that the generic behavior of system (1)
displays a transition to phase synchronization at a critical
value d, of the coupling strength [16—18]. All throughout the
present work, we will be referring to different graph configu-
rations for G, ranging from a simple ring with each node
connected to its ky;=4 neighbors to small-world graph to-
pologies constructed either by randomly rewiring each link
(SW-rew) of the ring with probability p,.=log N/N (i.e.,
following the procedure originally introduced by Watts and
Strogatz [19]) or just randomly adding a new link (SW-add)
per node with the same probability p, qi=Prew» to even SF
networks built following the Barabdsi-Albert model [4]
(mg*=2 and mP*=2).

In order to properly quantify the degree of synchroniza-
tion in Gy, we monitor the time evolution of the average
frequency in the ensemble

LN
wlt)=— J iy

(1) NEI 2

its corresponding standard deviation,

N
7=\ F 2 b~ 0],
i=1

and the phase synchronization order parameter [16],

N
S it
j=1

E

R(t) = %

bounded between zero and one (with R=1 if all oscillators
are phase synchronized).

The time averages of these quantities in the asymptotic
state, o,=(o,(1)), and R=(R(t)),, are reported in Figs. 1(a)
and 1(b) as a function of the coupling strength d for different
graph configurations for G,. It appears evident that in both
the SF and SW-add graphs there is a transition to a synchro-
nous state, whose onset occurs around d,.=0.5, while for the
more homogeneous graphs (the ring and the SW-rew) only
frequency synchronization (o,—0) is achieved within the
range of displayed coupling strengths. As illustrative ex-
amples, Figs. 1(c) and 1(d) show the time evolution (vertical
axis) of the cosine of the phase of the N=100 oscillators
(horizontal axis) arranged in a SF network for two different
values of the coupling strength, i.e., below [d=0.2, Fig. 1(c)]
and above [d=1.0, Fig. 1(d)] the threshold of the synchroni-
zation onset.

In the following we will first restrict our attention to an
initial network G, with a SW-rew topology and fully desyn-
chronized. Only in Sec. IV we will explore the effect of
considering alternative initial topologies.

B. Forcing network

Our aim is to entrain the pristine network G, which dis-
plays an unsynchronized motion such as the one shown in
Fig. 1(c), to a collective motion driven by an external pace-
maker of frequency w,.

To this purpose, at time #,=30 t.u., a forcing network is
grown on top of the evolution of G,. Precisely, at regular
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FIG. 1. Synchronization of G, before forcing, with N=100 nodes, and initial frequencies randomly distributed in the range 0.5+ 0.25 for
different graph configurations (see text for details). Upper row: (a) frequency dispersion o, and (b) phase synchronization order parameter
R as functions of the coupling strength d for a ring with k;=4Vi(*), a SW with a link rewiring probability of p,.,,=0.046 (<), a SW with
a link adding probability of p,4q=0.046 (), and a SF network (O). Each reported value of o, and R is the result of an ensemble average
over ten network realizations. Lower row: raster plots of the cosine of the phases in a SF coupling configuration for two different coupling

strengths, (¢) d=0.2 and (d) d=1.0.

times t,=ty+nT,,, we add up to N, external nodes, (with n
=1,...,N, and T, as the attaching period), whose phase

obeys q'S‘,,zw‘,,. Each time a new node is added, it forms m
unidirectional connections (of strength d,,) to nodes in G,

While, for the sake of illustration, in the following we set
m=1, the reported scenario is independent on the specific
choice of m, the only difference being that, for m=1, the
added nodes do not form additional cycles nor loops in the
original graph G,,.

A sketch of this process is shown in Fig. 2. There, nodes
in the pristine network G, for t<r, [Fig. 2(a)] are evolving
under the only influence of other nodes of G (dots and links
in black), while for r=13> ¢, [Fig. 2(b)], the network includes
three nodes (in blue) which are unidirectionally coupled
(blue thick links) to nodes in G,. As a consequence, the in-
degree k;(t) of every node in G, is an increasing function of
time.

The criterion for the evolution of k;(¢) is the key point in
the growth of the forcing network. The selection mechanism
through which the added nodes are linked to G, can be visu-
alized in Figs. 2(c) and 2(d), and it is entirely dependent on
the phase state of the network G,. In Fig. 2(c), the phase
difference A6,(t,)=;(t,)— ¢,(t,) between the phases of each
node in G, and that of the pacemaker is represented in the
unit circle as a point. These points will rotate in time around
the circle, clockwise or counterclockwise depending on
whether the difference between the node instantaneous fre-
quency and that of the pacemaker is positive or negative. At
time ¢, the nth forcing node is added and it selects that node
in G, whose phase difference A6(#,) holds more closely a
given phase condition 6. This phase relationship condition is
represented as a red line in Fig. 2(d). The node that, at #5, is
the candidate to receive a connection from the n=3 forcing
pacemaker is the node i=5, which therefore will increase its
degree from three to four.

More rigorously, we consider a generic parameter &
€ (0,27) and establish the connection with that node j,
whose actual value of the phase holds the condition

min 8- A6; mod 2|, (2)
=1, N :

with A6;=¢(t,)—p,(z,). When m>1, we iteratively repeat
the same condition excluding those nodes that already re-
ceived a link at the same time step.

As for the parameter 8§, we will show in Sec. IV that it
will not affect qualitatively the reported scenario. The only
constrain is that it cannot be taken equal to O nor to 2, as

3

5 6
(©) (d) 1

FIG. 2. (Color online) Growth and attaching mechanisms of the
forcing process for m=1. Upper row: cartoons of the network G, in
its pristine state [(a) at #,], and (b) at time 3 with the corresponding
added forcing nodes [n,(13)=3] marked in blue. Black thin (blue
thick) links are of strength d(d,), and black (blue) dots oscillate
with frequencies within 0.5 += Aw(w,). Lower row: representation in
the unit circle of the phase differences A§,(t) of each node in G,
with respect to that of the pacemaker. The red line marks the phase
relationship (in this case §=1r) and helps to visualize how the phase
condition determines the selection of the nodes that receive attach-
ments from the pacemakers (in this case i=35 at time t3).
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FIG. 3. Raster plots of the cosine of the phases of the oscillators
belonging to G, for two different coupling regimes, d,=0.2 (left
column) and d,=5.5 (right column), and for three pacemaker fre-
quencies. Other parameters specified in the text.

these values correspond to the stable fixed point emerging
during the entrainment of a single phase oscillator, and there-
fore these settings would determine a situation in which the
first node in G, becoming entrained with the pacemaker,
would, from there on, attract all the rest of connections.
The network-phase equation is therefore described by

N
. d )
b= wy; + mz a;; sin(; = )
d ny(1)
Gp : — b
+ 0 z by; sin(¢, — ¢,), (3)

where k,(¢) is the time evolving degree of the ith node that
accounts for new connections the ith node is receiving from
added nodes following the dynamical criterion given by Eq.
(2), and the matrix B=(b;;) is a size evolving matrix of N
Xn,(t) elements [with n,(t)=N,], whose entries b;; are
equal to one if the jth added node formed a connection with
the ith node in G, and zero otherwise.

III. RESULTS

The effect of the described forcing network on the en-
trainment of a small graph G, of N=100 oscillators is visible
in Fig. 3, which shows the raster plots of the cosine of the
oscillators’ phases in two regimes of the coupling strength d,,
and for three distinct pacemaker frequencies (wp=0.l, 0.5,
and 0.9). In the low coupling regime (left column), the forc-
ing network (that is composed here by N,=200 pacemakers)
is not able to entrain G, to any of the three frequencies, and
the raster plots exhibit a disordered behavior. On the other
hand, in the high coupling regime (right column), the forcing
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1/

FIG. 4. (Color online) Representation of two networks con-
structed for N=100, Np=1000, and 6=r. The nodes and links of
the original graph are depicted in black while the forcing nodes and
links are depicted in blue. The (a) [(b)] network corresponds to a
case in which the forcing nodes are unable [able] to eventually lock
the phases of the oscillators in.

network eventually controls G, and imposes a global oscilla-
tion at the prescribed pace, which emerges before the addi-
tion of pacemakers stops (=50 t.u.).

A statistical behavior of the complete dynamical response
of G in the d,-w, parameter space is reported in [15]. There
it is shown that the forcing network is able to impose its pace
in a wide range of the parameter space but it exists as a kind
of threshold phenomenon in dp, whose critical value for the
entrainment depends on the pacemaker frequency. Specifi-
cally, as far as w), is close to the mean value of the set of
natural frequencies in Gy(0.5), the frequency and phase en-
trainment process occurs already for a relatively small value
of d,, whereas, as w, deviates significantly from 0.5, the
value of d, that produces phase entrainment becomes larger
and larger.

Our main goal is to inspect the changes in the network
topology induced by the entrainment process. The way the
forcing process couples dynamics and topology makes that,
indeed, some nontrivial features in the structure emerge from
this interplay. In particular, the final degree distribution as-
sociated to the entrainment of G, becomes heterogeneous if
compared to the exponentially decaying distribution charac-
terizing its initial wiring structure. This effect is illustrated in
Fig. 4, which reports the graphical representation of two net-
works resulting from a forcing process (N=100, N,
=1000) with two different outcomes. The left network fea-
tures a rather homogeneous distribution of the links from the
pacemakers to G, (blue links), and corresponds to the graph
structure associated to an incoherent phase dynamics during
the whole evolution of the system (i.e., in a coupling regime
that does not induce entrainment). On the contrary, the right
plot unveils the presence of few nodes receiving a much
larger number of incoming links with respect to the rest of
graph. The relevant point is that such a kind of inhomoge-
neous distributions are always related to cases for which an
entrainment of G, is achieved (i.e., for sufficiently large val-
ues of the coupling strength d,).

To properly quantify the emergence of this heterogeneity
in the degree distribution, we perform large trials of numeri-
cal simulations with N=1000, Np=10 000, and d=0.2, and
we monitor the time evolution of the degree distribution
P,(k) of all nodes originally belonging to G, during the pro-
cess of forcing.
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FIG. 5. (Color online) Time evolution of the cumulative degree distribution P(k) in a double-logarithmic plot for a specific realization
of the growing process with N=1000, N,=10 000, and d=0.2. (a) @,=0.5 and d,=0.2 (nonentrained graph) and (b) d,=0.5 (entrained
graph). In both cases the inset reports the corresponding time evolution of R(z). The time instants at which the distributions are taken
(indicated in the time axis of the insets by their corresponding symbol) are: t=0(*); r=200(+); =500 (< ); =800 (O); +=1000 (). Notice
that, in the entrained case, Pj(k) converges to an asymptotic distribution ((J) which features a power-law shape.

In fact, we here measure the cumulative degree distribu-
tion P;(k), given by

kmax

Pi(k)= 2 P(K').

k' =k

This is because the summing process of the P(k)
smoothes the statistical fluctuations generally present in the
tails of the distribution. As a generic property, it is important
to remark that, if a power-law scaling is observed in the
behavior of P¢(k) [i.e., if P(k) ~ k], this implies that also
the degree distribution P(k) is characterized by a power-law
scaling P(k) ~ k™7, with

y=1+7.

Figure 5 reports how P{(k) evolves in time in the two
different coupling regimes: when d, is small enough so that
the forcing does not lead to any entrainment [Fig. 5(a)], and
for a process that eventually leads to entrainment of G to the
frequency of the pacemaker [Fig. 5(b)]. In both cases, the
insets report the corresponding evolution of R(z).

One immediately realizes that, in Fig. 5(a), P;(k) does not
deviate significantly in shape from its initial distribution

5(k), and the only effect of the forcing network in the de-
gree distribution is to uniformly increase the mean degree. At
variance, Fig. 5(b) shows that the entrainment process [mani-
fested by the evolution of R(z) to one in the inset] is accom-
panied by the convergence of P{(k) to an asymptotic distri-
bution P, (k) which features a power-law shape.

The difference in the final distributions for the nonen-
trained and entrained networks, and the convergence in this
latter case of P{(k) to a SF distribution Pf,(k) is independent
of the pacemaker frequency as reported in [15]. The specific
slope y of the power-law scaling does, instead, depend on
the specific choice of the external frequency w,. In our trials,
we always observed values of vy in the range (2,3), in accor-
dance to the values measured for most of the real world
networks [1]. In the following we will discuss the details of
the mechanism leading to the appearance of a SF degree
distribution in connection with a locking of the network’s
frequencies to the external pacemaker, and we will show that
the proposed attachment mechanism there gradually turns

into a preferential attachment process, wherein the larger is
the oscillator initial frequency difference with the pacemaker
while the higher is its probability of acquiring more and
more connections during the growth process.

IV. DISCUSSION
A. Mechanism for the emergence of the scale-free distribution

In order to explain the mechanism behind the emergence
of the scale-free degree distribution associated to the entrain-
ment of the network, let us go back to the representation in
the unit circle of the state of the network G, through the
phase differences A#6;(¢) introduced in Sec. II. In that repre-
sentation, if a given node in G, at some point locks its phase
to that of the pacemaker, one would have a corresponding
value Af;~0, and its phase difference vector will be locked
in the unit circle in the vicinity of the state A#=0. As a
consequence, as far as ¢ is strictly different from O and 27,
the node will not be likely to receive any further connection.

Now, when the forcing network is unable to entrain G,
each node of G, will be represented by a point that continu-
ously rotate in the unit circle (clockwise or counterclock-
wise) with a rotation frequency larger or smaller depending
on the actual difference between the frequency of the node
and that of the pacemaker. In such a condition, it is easy to
realize that the probability of locating the phase vector A6,
near the desired phase condition § [marked with the red line
in Fig. 2(d)] will be independent on the specific rotation
frequency of the representing point: if, indeed, the rotation
frequency is higher (lower), the time spent in the vicinity of
the phase relationship marker will be smaller (larger) but the
rate of crossing the marker will be equally larger (smaller).
As a result, the attaching process of the pacemakers is almost
equivalent to a random attachment, where at different times,
the additional pacemakers will select randomly the node to
form an attachment with.

Initially, G, is prepared in an incoherent state, and there-
fore, before the forcing process starts, the phase differences
are randomly distributed in the unit circle. As soon as pace-
makers are incorporated to the forcing network, if the cou-
pling strength d, is small enough not to produce locked
states (e.g., dp:0.2), almost all the nodes will remain un-

046105-5



SENDINA-NADAL et al.

d =0.2 d =0.5
p p

(a) (b)

FIG. 6. (Color online) Phase differences A; of the oscillators
with respect to that of the pacemaker distributed along the unit
circle at the end of (a) a frustrated locking process (d,=0.2) and (b)
a successful locked one (dI,:O.S). The red line indicates the phase
relationship for the attaching rule 6=, and the red circle indicates
the node that is receiving a link from a pacemaker at the time the
picture was taken.

locked (except maybe those few ones whose original fre-
quency was occasionally sufficiently close to that of the
pacemaker). In this case, the representing points will con-
tinue rotating in the unit circle, and the attachment process
will continue being almost random through the entire net-
work’s growth, thus preserving the initial distribution of the
phase differences, as shown in Fig. 6(a). On its turn, this
implies that, as pacemakers will randomly attach to nodes in
Gy, the arising degree distribution will be similar to those
characterizing random graphs, i.e., with Gaussian or Poisso-
nian decaying tails, as the one shown in Fig. 5(a).

On the other hand, when the coupling strength d,, is larger,
some nodes, especially those whose frequencies are closer to
that of the pacemaker, become progressively locked by the
forcing network and they are the first ones that will accumu-
late in the region around A#=0, as shown in Fig. 6(b). This
provokes a progressive increase in the probability of the re-
maining untrained nodes of receiving a link from the pace-
maker since they remain the only ones competing for receiv-
ing further attachments.

This mechanism is well illustrated in Fig. 6, which reports
snapshots of the dynamical state of the phase differences of
the nodes in G, at the end of both a frustrated locking pro-
cess [Fig. 6(a)] and of a successful entrainment [Fig. 6(b)].

The corresponding effect on the resulting topology is re-
ported in Fig. 7, where the final number of connections k;
acquired by each node of G, after all forcing pacemakers
have been added, is plotted as a function of its natural (ini-
tial) frequency wy;. It is evident that, for a low forcing cou-
pling regime, d,=0.2 (when entrainment fails), the distribu-
tion of the final degree is quite homogeneous among the
initial distribution of frequencies [Fig. 7(a)], indicating that a
kind of a random shooting has taken place during the attach-
ment process. In accordance with the dynamical description
given before, in this regime, nodes in G, remain unlocked
during the whole process, and their probability of being close
to the attaching condition (red line in Fig. 6) is independent
of their initial frequency.

On the other hand, in the high coupling regime, d,=0.5,
while initially the attaching process is at random, as more
and more oscillators in G, progressively become locked, the
process gradually turns into a preferential attachment in the
frequency difference (it is, indeed, reasonable that the first

PHYSICAL REVIEW E 79, 046105 (2009)

c
<= 200t
100}
. 300, ) dp=05
< 200} - .
: ?
1001 % f 1
0.2 0.4 0.6 0.8
©o

FIG. 7. (Color online) Final number of connections k;(zg,) ac-
quired by each node as a function of its initial frequency w,; for
w,=0.5, 6=m, and d,=0.2 (upper plot, unlocked case) and d,
=0.5 (lower plot, locked case).

nodes to lock will be the ones whose original frequency was
closer to that of the pacemaker). This is reflected by the fact
that the final degree distribution peaks around the extremes
of the natural frequency distribution [Fig. 7(b)].

B. Robustness of the scale-free emergence

It is relevant to notice that the emergence of a scale-free
fingerprint in the degree distribution associated to a global
entrainment of the network is a robust feature against varia-
tions in the initial conditions, in the attaching parameters,
and against fluctuations in the pacemaker oscillations.

In order to test the robustness of this phenomenon, we
computed the cumulative degree distribution P°(k) simulat-
ing a series of different scenarios. First, we considered dif-
ferent initial configurations for the initial topology and dy-
namics. In Fig. 8(a) we observe that, regardless on the
chosen pristine architecture for G, [the different initial distri-
butions P¢(¢=0) are plotted in the inset of the panel], the
stationary cumulative degree distribution approaches a
straight line in a double-logarithmic scale. In all these cases,
the oscillatory network achieves a synchronous state en-
trained with the forcing network, and even for the very regu-
lar topology, such as the ring configuration (orange squares),
the final degree distribution results heterogeneous.

Figure 8(b) accounts, instead, for the robustness of the
process against variations in the initial dynamical conditions
for G,. In particular, we observe that the results are not quali-
tatively changing by varying the width of the uniform distri-
bution of natural frequencies in G,. An interesting point is
that, without loosing the power-law scaling feature, it can be
seen that the more heterogeneous is the oscillator population,
the lower is the maximum degree. This can be easily under-
stood if one takes into account that in all cases, the size of
the forcing network is the same while it is reasonable that the
case of highest disorder would require a larger number of
pacemakers in order to achieve entrainment. In fact, the av-
erage value of the Kuramoto parameter for Aw=0.50 (the
only plotted case for which the entrainment is not achieved)
is not even close to 1.0 (R=0.48).

Another important dynamical aspect ruling the behavior
of the network is the specific nature of the coupling function,
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FIG. 8. (Color online) Robustness of the
power-law shape behavior of the stationary cu-
mulative  degree distribution P, (double-

logarithmic plots) under different cases. (a) Dif-
ferent initial degree distributions for the pristine
network, SW with rewiring probability pie
=0.0069, SW with adding probability p,qq

=0.0069, a ring configuration with four nearest
neighbors, and a SF network; (b) different natural
frequency dispersions Aw=0.05,0.10,0.25,0.5;
(c) a coupling term in Eq. (3) containing the sum
of the third power of the sinus of phase differ-
ences; (d) different values of the phase relation-
ship 8[8=m/4 and /2], for the attachment rule;
(e) different attaching periods T,,=0.1, 0.5, 1.0,

and 2.0 t.u.; (f) different levels of white-noise in-
tensities (D=0.5, 0.1, 0.05, 0.01, and D=0) af-
fecting the evolution of the pacemaker. In all

cases, unless differently indicated in the corre-
sponding panel: N=1000, N,=10000, d=0.2,
d,=0.5, 6=, SW-rew with p.,=0.0069 as ini-
tial topology for the graph, Aw=0.25, and Ty
=0.1 tu.

that is, the function that transfers the state from one oscillator
to its neighbors. Therefore, it is important to show that the
process reported so far is not dependent on the specific Kura-
moto model equation that is implemented on the network’s
nodes. If, indeed, we repeat the same numerical trials by
substituting the coupling term of Eq. (3) with

(1)

d - J |
m,g aij S1n3(¢’j_ ) + k_,(;L),:EI b;; sm3(¢p - ),

we obtain the same qualitative scenario, in which the even-
tual phase entrainment of the oscillators in G is always as-
sociated with the appearance of a scale-free distribution in
the final graph connectivity.

Figures 8(d) and 8(e) deal with the dependence of the
observed scenario on the parameters defining the attaching
mechanism, that is, the phase condition & [Fig. 8(d)], and the
attaching period T, [Fig. 8(e)]. In Sec. II, we already dis-
cussed the admissible values for 8, especially the fact that &
must be strictly different from 0 and 27r. We investigated the
effect of this parameter on the shape of P¢(k) assuming two
values, 6=m/2 and é=1r/4, different from the optimal one,
6=, which more effectively induces an entrainment in G,.

The results are shown in Fig. 8(d), and again depict a
similar qualitative behavior as that reported for é=7. Only

for 6=/4 (blue stars), which is a close value to the forbid-
den phase relationship, a small bump for medium degrees
appears, distorting a little bit the power-law trend. As for the
period of attaching a new pacemaker to G,, we observe that
the power-law behavior is preserved with variations in 7.
The only difference is the size of the degree interval where it
holds which decreases as T, increases. This is due to the fact
that a given pacemaker has more time to control part of the
network before the addition of a new one, giving rise to a
minor number of needed pacemakers to entrain the whole
network.

The last panel of Fig. 8 reports the results of simulations
aimed to test the robustness of the emergence of the scale-
free in G, in the presence of fluctuations in the pacemakers,
that is, by considering that the phase evolution of the forcing
network is affected by some white noise of zero mean and
intensity D, ¢p=wp+ &(r), where (&(1),&(t"))y=2D&(t—1").
The power-law behavior is clearly lost for very large noise
intensities (D=0.5) which is accompanied with a lost in the
level of entrainment (o,=0.2 and R=0.73) but for small
noise intensity values, the fluctuating forcing network is still
able to entrain G, and again the way the entrainment is
achieved is associated with the appearance of a SF degree
distribution for the nodes of .

Finally, we point out that no qualitative differences are
observed in the described scenario for different values of the
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internal coupling strength d, provided that it is kept below
the threshold for the synchronization onset of the initial
graph G.

V. CONCLUSIONS

In conclusion, we have shown that the topology and dy-
namics of a network of phase oscillators can be controlled at
once by means of a forcing mechanism which entrains the
phases of the oscillators to that of an external pacemaker in
connection with the reshaping of the network degree distri-
bution. We have furthermore proven that a dynamically
based rule in the attachment process leads to the emergence
of a power-law shape in the final degree distribution in the
original graph whenever the network is entrained to the dy-
namics of the pacemaker, and that the arousal of a scale-free
distribution in connection with the success of the entrain-
ment process is a robust feature, characterizing different net-
work’s initial configurations and parameters.

While several other studies have pointed out that net-
works’ topology and functioning are intimately and not trivi-
ally related (and, actually, SF topologies can optimize collec-
tive synchronous behavior if associated to a proper
weighting procedure [2,11] or to an adaptive graph evolution

PHYSICAL REVIEW E 79, 046105 (2009)

[6,7]), here we demonstrate that power-law tails in the con-
nectivity distribution (and hence the emergence of hubs and
degree heterogeneity) can be a direct consequence of a con-
trolled entrainment onto a generic initial topology of net-
working continuous time dynamical systems.

In particular, the most relevant aspect of our approach
consists in the fact that a merely dynamical rule [Eq. (2)] can
encompass at once a preferential-like attachment procedure
(when a collective state is promoted) and a sort of random-
like attachment giving rise to a homogeneous connectivity
distribution (when synchronization is not established).

The evidence that a purely dynamical mechanism can in-
duce the emergence of specific power-law degree distribu-
tions can provide new insights on the fundamental processes
at the basis of the growth of some of the real world networks,
which seem to, indeed, feature ubiquitously such kind of
connectivity distributions.
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